
课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
Hive是程序员在学习大数据技术的时候需要重点掌握的一个编程框架,下面我们就通过案例分析来了解一下,Hive大数据框架优化方法都有哪些。
1、数据格式优化
Hive提供了多种数据存储组织格式,不同格式对程序的运行效率也会有极大的影响。
Hive提供的格式有TEXT、SequenceFile、RCFile、ORC和Parquet等。
SequenceFile是一个二进制key/value对结构的平面文件,在早期的Hadoop平台上被广泛用于MapReduce输出/输出格式,以及作为数据存储格式。
Parquet是一种列式数据存储格式,可以兼容多种计算引擎,如MapRedcue和Spark等,对多层嵌套的数据结构提供了良好的性能支持,是目前Hive生产环境中数据存储的主流选择之一。
ORC优化是对RCFile的一种优化,它提供了一种高效的方式来存储Hive数据,同时也能够提高Hive的读取、写入和处理数据的性能,能够兼容多种计算引擎。事实上,在实际的生产环境中,ORC已经成为了Hive在数据存储上的主流选择之一。
2、小文件过多优化
小文件如果过多,对hive来说,在进行查询时,每个小文件都会当成一个块,启动一个Map任务来完成,而一个Map任务启动和初始化的时间远远大于逻辑处理的时间,就会造成很大的资源浪费。而且,同时可执行的Map数量是受限的。
3、推测执行优化
在分布式集群环境下,因为程序Bug(包括Hadoop本身的bug),负载不均衡或者资源分布不均等原因,会造成同一个作业的多个任务之间运行速度不一致,有些任务的运行速度可能明显慢于其他任务(比如一个作业的某个任务进度只有50%,而其他所有任务已经运行完毕),则这些任务会拖慢作业的整体执行进度。
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。更多内容请加danei0707学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。