
课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
数据库的架构开发随着互联网的不断发展而得到了广泛的应用,而今天我们就通过案例分析来了解一下,图数据架构与优化方法分享。
图数据库是现在许多现代用例的绝佳解决方案:欺诈检测、知识图、资产管理、推荐引擎、物联网、权限管理……凡你想得起的,都有图数据库的“身影”。
所有这些项目都得益于能够快速分析高度连接的数据点及其关系的数据库技术——而快速图数据库就是为这些任务而设计的。
但是,当涉及到“流行行话警报”可扩展性方面时,图数据库的性质带来了挑战。那么,为什么会出现这种情况?图数据库是否具有扩展的能力?让我们来看看这些问题。
接下来,我们将定义“扩展”的含义,深入研究可能阻碍图数据库扩展的两个挑战,并讨论当前可用的解决方案。
什么是“图数据库的可扩展性”
让我们快速定义一下这里所说的可扩展的含义,因为可扩展并不是“仅仅”将更多的数据放在一台机器上或者将其放在不同的机器上。在处理大型或不断增长的数据集时,你所需要的也是一个可以接受的查询性能。
因此,这里真正的问题是:当数据集在一台机器上增长甚至超过其能力时,图数据库是否还能够提供可接受的性能?
你可能会问,为什么这是一个先要问的问题呢?如果是这样,请阅读下面关于图数据库的快速回顾。如果你已经知道超节点和网络跃点等问题,请跳过快速回顾。
关于图数据库的快速回顾
简而言之,图数据库存储无模式的对象(顶点或节点),其中可以存储任意数据(属性)和对象之间的关系(边)。边通常有从一个对象指向另一个对象的方向。顶点和边形成一个数据点网络,称为“图”。
在离散数学中,图被定义为顶点和边的集合。在计算机领域中,它被认为是一种抽象的数据类型,擅长于表示连接或关系,不像关系数据库系统的表格数据结构,具有讽刺意味的是,它在表示关系方面非常有限。
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。更多内容请加danei0707学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。